1 PRIEDAS

PAV programos tvirtinimo raštas
LIETUVOS RESPUBLIKOS APLINKOS MINISTERIJOS
KLAIPĖDOS REGIONO APLINKOS APSAUGOS DEPARTAMENTAS
Valstybės biudžetinė įstaiga, Birutės g. 16, LT-91204, Klaipėda, tel. (8 46) 46 64 53,
Faks. (8 46) 46 64 52, el.p. rastine@klrd.am.lt
Duomenys kaupiami ir saugomi Juridinų asmenų registre, kodas 190742333

UAB „COWI Lietuva“
Ukmergės g. 369A, LT-12142 Vilnius
El. p. daba@cowi.lt
2013-10-16 Nr. (33-1)-LV4-3096
2013-09-17 raštą

SPRENDIMAS

Lietuvos Respublikos aplinkos ministerijos Klaipėdos regiono aplinkos apsaugos departamentas (toliau – Departamentas), vykdydamas 2013-10-08 Klaipėdos apygardos administraciniu teismo sprendimą, kuriuo Departamentas yra įpareigotas ne veliau kaip per 10 d. nuo šio sprendimo įsigaliojimo dienos priimti sprendimą patvirtinti UAB „Minijos nafta“ naftos gavybos Gargždų licencinio ploto pietvakarinėje dalyje (Kintų objekte) poveikio aplinkai vertinimo programą, tvirtina UAB „COWI Lietuva“ parengtą UAB „Minijos nafta“ naftos gavybos Gargždų licencinio ploto pietvakarinėje dalyje (Kintų objekte) poveikio aplinkai vertinimo programą su sekančiomis pastabomis:

1) Siekiant užtikrinti nenaudojamų žemės gelmių išteklį, esančių tame pačiame telkinyje arba jo įtakos zonoje apsaugą nuo planuojamų ūkinės veiklos (toliau – PŪV) pasėkoje tiketino reikšmingo poveikio, poveikio aplinkai vertinimo (toliau – PAV) ataskaitoje tiketino PŪV poveikio žemės gelmiams, kaip vienam ir aplinkos komponentų, vertinimą atlikti remiantis informaciją apie PŪV vietose esančius faktinius žemės gelmių išteklius.

2) PŪV PAV ataskaitoje nurodyti ar naftos ištekliams išgauti bus naudojamas hidraulinio plėšymo metodas ir jeigu jis bus naudojamas, įvertinti šio technologinio sprendimo tiketiną reikšmingą poveikį aplinkos komponentams, ypatą dėmesį atkreipiant į tiketiną reikšmingą poveikį žemės gelmiams ir jose glūdintiems žemės gelmių ištekliams.

3) Jeigu PAV ataskaitoje vietos naftos gavybos gręžiniams įrengti bus pasirinktos už Gargždų licencinio ploto ribų, pagrįsti tokio pasirinkimo teisėtumą.

Direktorius

Andrius Kairys

A. Šepštas, (8-46) 466 450, el.p.: a.sepstas@klrd.am.lt

2013-09-17 UAB COWI Baltics raštų
2 PRIEDAS

Ištrauka iš 1995 m. kovo 27 d. Gargždu licencinės sutarties
Lietuvos geologijos tarnybos 2015-08-18 raštas Nr. (5)-1.7-2747
Ištrauka iš 1995 m. kovo 27 d. Gargždu licencinės sutarties, sudarytos tarp Lietuvos Respublikos Vyriausybės ir Lietuvos ir Danijos uždarosios akcinės bendrovės „Minijos nafta“, įsteigtos pagal Lietuvos Respublikos įstatymus.

3 Straipsnis. Minijos Naftos teisės

Minijos Nafta:

(ii) turi priėjimą prie Licencinės teritorijos ir bet kurios kitos teritorijos už Licencinės teritorijos ribų, reikalingos Naftos darbams ir pagrįstam įrengimų bei angliaivandenilių transportavimui, sutinkamai su Valstybės įstatymais.

APIBRĖŽIMAI

"Naftos darbai" reiškia planavimą ir veiklą, susijusius su angliaivandenilių paieška, žvalgymu, gavybos vystymu ir gavyba.
LITUVOS GEOLOGIJOS TARNYBA
PRIE APLINKOS MINISTERIJOS

Valsybės biudžetinė įstaiga, S.Konarskio g. 35, LT-03123 Vilnius, tel. (8 5) 233 2889, 233 2482,
faks. (8 5) 233 6156, el. p. lg@lgt.lt. http://www.lgt.lt
Duomenys kaupiamai ir saugomi Juridinių asmenų registre, kodas 188710780

Pajūrio tyrimų ir planavimo institutui 2015-08-19 Nr. (5)-A7-247
1 2015-07-28 Nr. (S15-190

DĖL UAB „MINIJOS NAFTA“ NAFTOS GAVYBOS GARGŽDŲ LICENCINIO PLOTO PIETVAKARINĖJE DALYJE (KINTŲ OBJEKTE) POVEIKIO APLINKAI VERTINIMO

Lietuvos geologijos tarnyba prie Aplinkos ministerijos (toliau – Tarnyba) pagal kompetenciją įsnagrinėjusi Jūsų 2015-07-28 raštą Nr. S15-190 „Dėl UAB „Minijos nafta“ naftos gavybos Gargždų licencinio ploto pietvakarinėje dalyje (Kintų objekte) poveikio aplinkai vertinimo, teikia šią informaciją:

Poveikio aplinkai vertinimo ataskaitoje (toliau – PAV ataskaitoje) nuodytai sklypai Nr. 1 ir Nr. 3 yra už UAB „Minijos nafta“ licencinio ploto ribų, tačiau UAB „Minijos nafta“ jose turi teisę vykdyti naftos paieškos ir žvalgybos darbus, ir vykdyti naftos gavybą iš telkiniių, esančių licencinio ploto ribose.

Pagal Lietuvos Respublikos žemės gelmių įstatymo 61 straipsnio 2 dalies nuostatas „teisę užsiimti atskirų rūšių tiesioginiai ir nuotoliniai žemės gelmių tyrimas juridiniams ir fiziniam asmenims bei šių asmenų grupėms, veikiančioms pagal Jungtinės veiklos sutartis, Vyriausybės nustatyta tvarka suteikia Lietuvos geologijos tarnyba“. Pažymėme, kad UAB „Minijos nafta“ turi nustatyta tvarka išduotą leidimą vykdyti angliaivandenilių paiešką ir žvalgybą.

Pažymėtina, kad pagal Angliaivandenilių išteklių paieškos, žvalgybos ir naudojimo (gavybos) Lietuvos Respublikoje taisyklių 24 p., kai leidime naudoti angliaivandenilių išteklius yra numatyta paieška ir (ar) žvalgyba, leidimas suteikia teisę leidime nurodytame plote naudoti ir naujus ar papildomai ištirtus angliaivandenilų išteklius pagal Žemės gelmių įstatymo ir kitų teisės aktų reikalavimus.

Tuo atveju, jei Kintų objekte bus surastas ir išvalgytas naftos telkinys, jo ištekliai ir erdinė padėtis turės būti aprobuoti Lietuvos geologijos tarnyboje nustatyta tvarka, o telkinys įregistruotas Žemės gelmių registre. Telkinys galės būti eksploatuojamas tik patvirtinus jo naudojimo projektą, o sklypai Nr. 1 ir Nr. 3 galėtų būti naudojami naftos gavybai iš telkiniių, esančių licencinio ploto ribose, teisės aktų nustatyta tvarka.

Direktorius

Jonas Satkūnas

Viktoras Lokutijevas tel. (8 5) 233 0142, el.p. viktoras.lokutijevas@lgt.lt
Jurga Lazauskiene tel. (8 5) 233 4642, el.p. jurga.lazauskiene@lgt.lt
3 PRIEDAS

Lietuvos hidrometeorologijos tarnybos pažyma apie hidrometeorologines sąlygas
LIETUVOS HIDROMETEOROLOGIJOS TARNYBA
PRIE APLINKOS MINISTERIJOS
KLIMATOLOGIJOS SKYRIUS

Biudžetinė įstaiga, Rudnios g. 6, LT-09300 Vilnius, tel. (8 5) 275 1194, faks. (8 5) 272 8874, el.p. lbmt@meteo.lt , www.meteo.lt
Duomenys kaupiami ir saugomi Juridinių asmenų registre, kodas 290743240

VšĮ Pajūrio tyrimų ir planavimo instituto
Direktorei Zitai Gasiūnaitei

H. Manto g. 84, LT-92294 Klaipėda
El. p. darius.pavolis@corpi.lt

PAŽYMA APIE HIDROMETEOROLOGINES SĄLYGAS

2015 m. sausio 6 d. Nr. (5.58.-9)-B8- 384

Elektroniniu paštu pateikiamo Šilutės hidrometeorologijos stoties (toliau – HMS) 2010–2014 m. vidutinės oro temperatūros (°C), vėjo greičio (m/s), vėjo krypties (laipsniai) ir bendrojo debesuotumo (oktantai) matavimų duomenis. Šilutės HMS koordinatės: 55,352222 ir 21,446944; aukštis virš jūros lygio 2,7 m. Vėjo parametrai matuojami 10 m aukštyje.

Pagal Lietuvos hidrometeorologijos tarnybą prie AM meteorologinių stebėjimų nuostatus meteorologijos stotyse iki 2011 m. birželio 30 d. visi stebėjimai buvo atliekami kas 3 val. Nuo 2011 m. liepos 1 d. – kas valandą, išskyrus debesuotumo stebėjimus, kurie ir toliau atliekami kas 3 val.

Vedėja

Audronė Galvonaitė

Zina Kitrienė, mob. 8 648 06 311, el. paštas zina.kitriene@meteo.lt
Originalas nebus siunciamas
4 PRIEDAS

LR AM Klaipėdos regiono aplinkos apsaugos departamento 2014-06-02 raštas Nr. (4) - LV4-1332 dėl aplinkos oro foninės taršos
DĖL APLINKOS ORO FONINĖS TARŠOS

Lietuvos Respublikos aplinkos ministerijos Klaipėdos regiono aplinkos apsaugos departamentas (toliau - Departamentas) gavo Jūsų prašymą patiekti foninio aplinkos oro užterštumo duomenis UAB „Minijos nafta“ naftos gavybai Gargždų licencinio ploto pietvakarinėje dalyje Kintų objekte, Šilutės rajone.

Vadovaujantis 2007-11-30 LR aplinkos ministro įsakymo Nr. D1-653 „Dėl aplinkos oro užterštumo duomenų ir metrologinių duomenų naudojimo tvarkos ūkinės veiklos poveikiai aplinkos orui įvertinti“ 1.3.2 punktu Departamentas teikia visų šių įvertinimų, kurio poveikį aplinkos orui numatoma vertinti, iki 2 km atstumu esančių kitų ūkinės veiklos objektų aplinkos oro taršos šaltinių ir iš jų įžymiausių teršalų inventorizacijos ataskaitos duomenis. Informuojame, kad statomo objekto 2 km atstumu nėra kitų ūkinės veiklos objektų, kuriems nustatyta tvarka būtų parengtos aplinkos oro taršos šaltinių ir iš jų įžymiausių teršalų inventorizacijos ataskaitos ar teisės aktų nustatyta tvarka būtų pritarti teigiamai dėl planuojamos ūkinės veiklos galimybių.

Atliekant teršalų sklaidos skaičiavimus siūlome naudoti sančiukai švarių Lietuvos kaimiškųjų vietovių aplinkos oro teršalų vidutinių metinių koncentracijų vertes, nustatytas pagal nuolatinių matavimų integracijoje monitoringuojo stočių ir modeliavimo duomenis. Teikiant įmonės dokumentaciją, būtina pateikti išrašą, su duomenimis kurie buvo naudojami foninės sklaidos skaičiavimui iš Aplinkos apsaugos agentūros interneto svetainės: www.gamta.lt (oras->foninės koncentracijos PAOV skaičiavimams-> sančiukai švarių Lietuvos kaimiškųjų vietovių aplinkos oro teršalų vidutinių metinių koncentracijų vertės).

Direktorius

Andrius Kairys

Originalas nebus siunčiamas

G. Arkušauskienė, 466 451, el.p.:g.arkusauskien@klrd.am.lt
5 PRIEDAS

Aplinkos oro taršos (LOJ) šaltinių inventorizacijos duomenys
Lietuvos ir Danijos UAB „Minijos nafta“

Gamyklos g. 11, Gargždų m., Gargždų sen., Klaipėdos r. sav. 110699717

Inventorizacija atlikta 2014 m.

Ūkinės veiklos vadovas: Generalinis direktorius Thomas M. Haselton

A.V.

SAKUČIŲ NAFTA TELKINYS
Gręžinių SAKUČIAI - 1, 7; KIŠKIAI - 1, 2 aikštelė

APLINKOS ORO TARŠOS ŠALTINIŲ IR IŠ JŲ IŠMETAMŲ TERŠALŲ INVENTORIZACIJOS ATASKAITA

2014
RENGĖJŲ SARAŠAS

UAB „Vinilija ir ko“ rengė 1-5 inventorizacijos ataskaitos dalių aprašus

Direktorius
Aleksandr Romanov

Lietuvos ir Danijos UAB „Minijos nafta“
rengė pirminę informaciją

Kontrolierius
Bronius Radeckas
TURINYS

1. Bendri duomenys apie ūkinės veiklos objektą 4
2. Teršalų išsiskyrimo šaltiniai (1 lentelė) 6
3. Stacionariųjų taršos šaltinių fiziniai duomenys (2.1 lentelė) 7
4. Tarša į aplinkos orą (2.2 lentelė) 8
5. Aplinkos oro teršalų valymo įrenginiai (3 lentelė) 9
6. Į aplinkos orą išmetami teršalai, jų išvalymas (nukenksminimas) (4 lentelė) 10
7. Medžiagų paskirstymo balansas (5 lentelė) 11
8. Literatūros sąrašas 12

PRIEDA

1. Tyrimų rezultatų protokolai 13
2. Į aplinkos orą išmetamų teršalų kiekio apskaičiavimas 26
3. Sklypo planas su pažymėtais stacionariais aplinkos oro taršos šaltiniais 32
ANOTACIJA

Ši aplinkos oro taršos šaltinių ir iš jų išmetamų teršalų inventorizacija atlikta ir ataskaita parengta vadovaujantis Aplinkos ministro 2008 m. liepos 10 d. įsakymo Nr. D1-371 reikalavimais, siekiant patikslinti UAB „Minijos nafta“ aplinkos oro taršos šaltinių parametrus bei išmetamų teršalų kiekį.

2014 m. gegužės mėn. UAB Vakarų centrinės laboratorijos bei II „EKOLABORA“ laboratorijos specialistų iš visų UAB „Minijos nafta“ taršos šaltinių buvo atlikti išmetamų teršalų kontroliniai matavimai ir laboratoriniai tyrimai. Tyrimų rezultatų protokolai pateikti šios ataskaitos priede Nr. 1.

Išmetimų skaičiavimai atlikti pagal aplinkos ministro 2005 m. liepos 15 d. įsakymu Nr. D1-378 patvirtintas teršalų kiekio apskaičiavimo metodikas (žr. priedą Nr. 2).

Sklypo planas su pažymėtais stacionariais aplinkos oro taršos šaltiniais, nurodant kiekvieno jų numerį, pateiktas šios ataskaitos priede Nr. 3.

Susisteminti duomenys įrašyti į ataskaitos 1-5 lenteles.

BENDRI DUOMENYS APIE ŪKINĖS VEIKLOS OBJEKTĄ

Ūkines veiklos objekto pavadinimas: Lietuvos ir Danijos UAB „Minijos nafta“
Adresas: Gamyklos g. 11, Gargždų m., Gargždų sen., Klaipėdos r. sav.
Aikštėlė: Sakučių naftos telkinys, gręžinių ŠAKUČIAI - 1, 7; KIŠKIAI - 1, 2 aikštėlė

Ūkines veiklos objekte vykdomų veiklos rūšių ir naudojamų technologijų, dėl kurių į aplinkos orą išmetami teršalai, aprašymas.

Bendrovės pagrindinė veikla – žaliavinės naftos gavyba. Naftos gavybos technologinis procesas susideda iš keletos pagrindinių etapų:

- fluido (naftos, vandens ir dujų mišinio) išgavimas iš žemės gelmių per gręžinius;
- fluido suskaidymas į atskiras fazes (vanduo, nafta, dujos);
- antrinis vandens atskyrimas iš naftos (dehidratacija);
- naftos ir vandens sandėliavimas ir apskaita;
- naftos pakrovimas ir išvežimas;
- dujų utilizavimas;
- sluoksnio vandens utilizavimas.

Fluidas (naftos, vandens ir dujų mišinys) iš slūgsančio kambro uolienų per gręžinį natūraliu būdu (savibėgiu) arba siurbliu pagalba yra pakeltamasis į paviršių. Iš gręžinio vamzdynais vandens, naftos ir dujų mišinys patenka į tris fazių separatorių kuriame iš fluido atskiriama nafta, vanduo ir dujos. Galutiniai iš naftos vandens likučiai atskiriama dehidratacinėje talpoje. Nafta, atitinkant kokybinius reikalavimus, laikoma sandėliavimo talpoje, iš kurių yra pakraudama į autokisternas ir išvežama parduoti. Toks technologinis procesas vyksta nuolat, todėl inventoriizuojant išmetimus sąlygina priimta, kad viena talpykla nepertraukiamai užpildoma (taršos šaltinių Nr. 151, 155, 161), likusios panaudojamos saugojimui (taršos šaltinių Nr. 152, 156, 162, 163).

Dujos utilizuojamos jas deginant fakеле (taršos šaltinis Nr. 320), esančiame aikštėlės teritorijoje. Naujos konstrukcijos fakelai užtikrina visas pagal „Tebodin“ metodiką išvardintas A
degimo proceso tipo fakelo sąlygas. Eksplotuojamas fakelis yra su priverstiniu oro sruto padavimu į fakelo degimo zoną (už tikrina geriausia dujų sudeginimą), pastoviu automatiniu liepsnos uždegimu (už tikrina nepереруактiamą fakelo degimą vėjotu metu). Fakelas yra horizontalus, įrengtas už grunto pylimo ir nuo aplinkinių paslėptas (kad nesimatyti tiepsenos) už nepermatomos metalinės tvoros. Horizontalus fakelis su paslėpta regulatorius už tikrina pastovų oro padavimą į fakelo degiklį. Esant tokiomis sąlygomis dujos gerai sudėga ir virš fakelo nesusidaro suodžių.

Dalies dujų yra sudeginama elektros energijos gamybos generuotuvės (taršos šaltinis Nr. 216), kuris gamina elektros energiją naftos gavybos aikštelės reikmėms tenkinti.

Sluoksnio vanduo iš separatoriaus nukreipiamas į vandens sandeliavimo talpas, iš kurių perpumpavus į autocisternas išvežamas į injekcinių gręžinių aikštelės utilizuotu. Nafta ir vanduo iš gavybos aikštelės išvežami autotransportu (pagal sutartis su transporto įmonėmis). Iš sandeliavimo talpyklų nafta perpumpuojama į autocisternas (taršos šaltinis Nr. 150).

Organizuotų stacionarių aplinkos oro taršos šaltinių apibūdinimas

<table>
<thead>
<tr>
<th>Veiklos rūšių, dėl kurių į aplinkos orą išmetami teršalai, aprašymas</th>
<th>Organizuotų taršos šaltinių Nr.</th>
<th>Aplinkos oro teršalai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naftos dujų deginimas fakelo ir generuotuvės</td>
<td>320, 216</td>
<td>Anglies monoksidas (B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lakięji organiniai junginiai</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Azoto oksidai (B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kietosios dalelės (B)</td>
</tr>
<tr>
<td>Naftos užpildymas į talpyklas</td>
<td>151, 155, 161</td>
<td>Lakięji organiniai junginiai</td>
</tr>
<tr>
<td>Naftos sandeliavimas talpyklose</td>
<td>152, 156, 162, 163</td>
<td>Lakięji organiniai junginiai</td>
</tr>
<tr>
<td>Naftos perpumpavimas į autocisternas</td>
<td>150</td>
<td>Lakięji organiniai junginiai</td>
</tr>
</tbody>
</table>

Neorganizuotų stacionarių aplinkos oro taršos šaltinių apibūdinimas

<table>
<thead>
<tr>
<th>Veiklos rūšių, dėl kurių į aplinkos orą išmetami teršalai, aprašymas</th>
<th>Neorganizuotų taršos šaltinių Nr.</th>
<th>Aplinkos oro teršalai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neorganizuotų taršos šaltinių nėra</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Naftos gavyba

<table>
<thead>
<tr>
<th>Gręžinys</th>
<th>Mato vnt.</th>
<th>Kiekis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sakučiai - 1</td>
<td>m³/metus</td>
<td>1100</td>
</tr>
<tr>
<td>Sakučiai - 7</td>
<td>m³/metus</td>
<td>700</td>
</tr>
<tr>
<td>Kiškių - 1</td>
<td>m³/metus</td>
<td>1700</td>
</tr>
<tr>
<td>Kiškių - 2</td>
<td>m³/metus</td>
<td>3200</td>
</tr>
</tbody>
</table>

Naudojamų tirpiklių turinčių medžiagų ar preparatų: dažų, lakų ir kitų produktų, turinčių lakiųjų organinių junginių (olio – LOJ), pavadinimai, jų kiekis, sudėtis ir sudėtyje esančių LOJ, pažymėtų rizikos frazėmis (R frazes): R40 (halogeninti), R45, R46, R49, R60, R61 pavadinimai, kiekis, žaliavų ir medžiagų sunaudojimo gamyboje šiai produkcijai pagaminti balansas.

Tirpiklių turinčios medžiagos nenaudojamos.

Energetinių įrenginių naudojamos kuro rūsys bei jų kiekis

<table>
<thead>
<tr>
<th>Energetinio įrenginio pavadinimas</th>
<th>Naudojamo kuro pavadinimas</th>
<th>kiekis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektros energijos gamybos generatorius</td>
<td>Naftos dujos</td>
<td>43800 m³/metus</td>
</tr>
<tr>
<td>Veiklos rūšies kodas arba Nr.</td>
<td>Cecho ar kt. pavadinimas arba Nr.</td>
<td>pavadinimas</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>090206</td>
<td>Sakučiai - 1, 7; Kiškiai - 1, 2 aikštelė</td>
<td>Dujų deginimo fakelas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Talpyklos pildymas</td>
</tr>
<tr>
<td>050201</td>
<td></td>
<td>Talpyklos pildymas</td>
</tr>
<tr>
<td>050201</td>
<td></td>
<td>Talpyklos pildymas</td>
</tr>
<tr>
<td>050201</td>
<td></td>
<td>Sandėliavimas talpykloje</td>
</tr>
<tr>
<td>050201</td>
<td></td>
<td>Autocisternos liukas</td>
</tr>
<tr>
<td>090206</td>
<td></td>
<td>Dujų generatorius</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.1 lentelė. STACIONARIŲ JŲ TARŠOS ŠALTINIŲ FIZINIAI DUOMENYS

<table>
<thead>
<tr>
<th>pavadinimas</th>
<th>Nr.</th>
<th>koordinatės</th>
<th>aukštis, m</th>
<th>išmetimo angos matmenys, m</th>
<th>srauto greitis, m/s</th>
<th>temperatūra, °C</th>
<th>tūris debitas, Nm³/s</th>
<th>teršalų išmetimo trukmė, val/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dujų deginimo fakelas</td>
<td>320</td>
<td>326698</td>
<td>6151680</td>
<td>0,45</td>
<td>0,43</td>
<td>-</td>
<td>1950</td>
<td>0,1146</td>
</tr>
<tr>
<td>Talpyklos pildymas</td>
<td>151</td>
<td>326764</td>
<td>6151537</td>
<td>3,2</td>
<td>0,05</td>
<td>0,59</td>
<td>28,6</td>
<td>0,0011</td>
</tr>
<tr>
<td>Talpyklos pildymas</td>
<td>155</td>
<td>326761</td>
<td>6151549</td>
<td>3,2</td>
<td>0,05</td>
<td>0,57</td>
<td>28,7</td>
<td>0,001</td>
</tr>
<tr>
<td>Talpyklos pildymas</td>
<td>161</td>
<td>326758</td>
<td>6151560</td>
<td>3,2</td>
<td>0,05</td>
<td>0,6</td>
<td>28,8</td>
<td>0,001</td>
</tr>
<tr>
<td>Sandėliavimas talpykloje</td>
<td>152</td>
<td>326767</td>
<td>6151538</td>
<td>3,2</td>
<td>0,05</td>
<td>0,08</td>
<td>25,9</td>
<td>0,00014</td>
</tr>
<tr>
<td>Sandėliavimas talpykloje</td>
<td>156</td>
<td>326764</td>
<td>6151550</td>
<td>3,2</td>
<td>0,05</td>
<td>0,07</td>
<td>26</td>
<td>0,00012</td>
</tr>
<tr>
<td>Sandėliavimas talpykloje</td>
<td>162</td>
<td>326761</td>
<td>6151561</td>
<td>3,2</td>
<td>0,05</td>
<td>0,09</td>
<td>26,2</td>
<td>0,00016</td>
</tr>
<tr>
<td>Sandėliavimas talpykloje</td>
<td>163</td>
<td>326764</td>
<td>6151562</td>
<td>3,2</td>
<td>0,05</td>
<td>0,08</td>
<td>26,1</td>
<td>0,00014</td>
</tr>
<tr>
<td>Autocisternos liukas</td>
<td>150</td>
<td>326761</td>
<td>6151525</td>
<td>3,7</td>
<td>0,5</td>
<td>0,05</td>
<td>25,5</td>
<td>0,0097</td>
</tr>
<tr>
<td>Dujų generatorius</td>
<td>216</td>
<td>326720</td>
<td>6151640</td>
<td>3</td>
<td>0,075</td>
<td>19,48</td>
<td>186</td>
<td>0,086</td>
</tr>
</tbody>
</table>
2.2 lentelė. TARŠA Į APLINKOS ORĄ

<table>
<thead>
<tr>
<th>Veiklos rūšies kodus</th>
<th>Cecho ar kt. pavadinimas arba Nr.</th>
<th>Taršos šaltiniai</th>
<th>Teršalai</th>
<th>Tarša</th>
<th>vienkartinis dydis</th>
<th>metinė, t/metus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pavadinimas</td>
<td>Nr.</td>
<td>pavadinimas</td>
<td>kodas</td>
<td>vnt.</td>
<td>vidut.</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>090206</td>
<td>Sakučiai - 1, 7; Kiškiai - 1, 2 aikštėlė</td>
<td>Dujų deginimo fakelas</td>
<td>320</td>
<td>Anglies monoksidas (B)</td>
<td>5917</td>
<td>g/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lakieji organiniai junginiai</td>
<td>308</td>
<td>g/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Azoto oksidai (B)</td>
<td>5872</td>
<td>g/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kietosios dailelės (B)</td>
<td>6486</td>
<td>g/s</td>
</tr>
<tr>
<td>090206</td>
<td></td>
<td>Dujų generatorius</td>
<td>216</td>
<td>Anglies monoksidas (B)</td>
<td>5917</td>
<td>g/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Azoto oksidai (B)</td>
<td>5872</td>
<td>g/s</td>
</tr>
</tbody>
</table>

Iš viso pagal veiklos rūšį: **6,6953**

1 2 3 4 5 6 7 8 9 10	Auksinis	Pavadinimas	Nr.	Pavadinimas	Kodas	Vnt.	Vidut.	Maks.	
----------------------	----------	--------------	-----	-------------	-------	------	-------	-------	
050201	Sakučiai - 1, 7; Kiškiai - 1, 2 aikštėlė	Talpyklos pildymas	151	Lakieji organiniai junginiai	308	g/s	0,09327	0,09389	2,9414
050201	Talpyklos pildymas	155	Lakieji organiniai junginiai	308	g/s	0,08134	0,08188	2,5651	
050201	Talpyklos pildymas	161	Lakieji organiniai junginiai	308	g/s	0,07606	0,07728	2,3986	
050201	Sandėliavimas talpykloje	152	Lakieji organiniai junginiai	308	g/s	0,01163	0,01208	0,1375	
050201	Sandėliavimas talpykloje	156	Lakieji organiniai junginiai	308	g/s	0,01116	0,01164	0,1320	
050201	Sandėliavimas talpykloje	162	Lakieji organiniai junginiai	308	g/s	0,01479	0,01523	0,1749	
050201	Sandėliavimas talpykloje	163	Lakieji organiniai junginiai	308	g/s	0,01239	0,01332	0,1465	
050201	Autocisternos liukas	150	Lakieji organiniai junginiai	308	g/s	0,67440	0,72324	0,4661	

Iš viso pagal veiklos rūšį: **8,9621**

Iš viso įrenginiui: **15,6574**
6 PRIEDAS

Aplinkos oro taršos iš fakelo skaičiavimai
<table>
<thead>
<tr>
<th>TERŠALŲ, IŠMETAMŲ IŠ FAKELO, SKAIČIAVIMAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naftos kiekis, t</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>59860</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dujų sudėtinės dalys</th>
<th>Kiekis dujose, tūrio %</th>
<th>Lyg. svoris, kg/m³</th>
<th>Dujų kiekis, m³</th>
<th>Dujų kiekis, kg/val.</th>
<th>Kiekis dujose, masės %</th>
<th>Dujų kiekis, kg/val.</th>
<th>Bendras dujų kalorin-gumas, MJ/kg</th>
<th>Anglies kiekis deginamo dujose, kg/val.</th>
<th>Anglies kiekis anglia-vandenilų dujose, kg/val.</th>
<th>Sieros kiekis dujose, kg/val.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>41,430</td>
<td>0,717</td>
<td>1207759,90</td>
<td>137,872</td>
<td>98,854</td>
<td>22,356</td>
<td>52,580</td>
<td>11,755</td>
<td>74,1407</td>
<td>74,1407</td>
</tr>
<tr>
<td>C₂H₆</td>
<td>19,800</td>
<td>1,342</td>
<td>577206,04</td>
<td>65,891</td>
<td>88,426</td>
<td>19,998</td>
<td>49,680</td>
<td>9,935</td>
<td>70,7407</td>
<td>70,7407</td>
</tr>
<tr>
<td>C₂H₈</td>
<td>17,970</td>
<td>2,020</td>
<td>523858,21</td>
<td>59,801</td>
<td>120,798</td>
<td>27,319</td>
<td>46,350</td>
<td>12,662</td>
<td>98,8350</td>
<td>98,8350</td>
</tr>
<tr>
<td>C₃H₁₀</td>
<td>7,150</td>
<td>2,597</td>
<td>208435,51</td>
<td>23,794</td>
<td>61,786</td>
<td>13,973</td>
<td>45,720</td>
<td>6,388</td>
<td>51,1332</td>
<td>51,1332</td>
</tr>
<tr>
<td>C₄H₁₂</td>
<td>2,030</td>
<td>3,223</td>
<td>59178,19</td>
<td>6,756</td>
<td>21,771</td>
<td>4,924</td>
<td>45,350</td>
<td>2,233</td>
<td>18,1425</td>
<td>18,1425</td>
</tr>
<tr>
<td>N₂</td>
<td>10,300</td>
<td>1,250</td>
<td>300263,75</td>
<td>34,277</td>
<td>42,846</td>
<td>9,690</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>CO₂</td>
<td>1,170</td>
<td>1,977</td>
<td>34107,63</td>
<td>3,894</td>
<td>7,698</td>
<td>1,741</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>H₂S</td>
<td>0,000</td>
<td>1,620</td>
<td>0,00</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>16,993</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Inertinės</td>
<td>0,150</td>
<td>4372,77</td>
<td>0,499</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Suma</td>
<td>100,00</td>
<td>2915182,00</td>
<td>332,783</td>
<td>442,179</td>
<td>100,000</td>
<td>256,673</td>
<td>42,973</td>
<td>315,0914</td>
<td>312,9921</td>
<td>0,0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degimo proceso tipas</th>
<th>Anglies monoksido</th>
<th>Angliavandenilių</th>
<th>Azoto oksido, terminio</th>
<th>KD</th>
<th>Sieros oksido</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,0423</td>
<td>64,4047</td>
<td>0,1159</td>
<td>3,6557</td>
<td>0,04750</td>
</tr>
<tr>
<td>Iš viso teršalų, t/m</td>
<td>70,3866</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naftos kiekis, t</td>
<td>Naftos lyg. svoris, t/m³</td>
<td>Dujų faktorius, m³/t</td>
<td>Išgautų dujų, m³</td>
<td>Fakelo degimo laikas, val.</td>
<td>Degimo metu susidarantis šilumos kiekis, MJ/val.</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>59860</td>
<td>0,82</td>
<td>48,70</td>
<td>2915182,0</td>
<td>8760,0</td>
<td>18430,925</td>
</tr>
</tbody>
</table>

Tipas A: 1,00

Sudeginta dujų elektros generatoriuje: 87600,0

Sudeginta dujų fakele: 2827582,0

<table>
<thead>
<tr>
<th>Dujų sudėtinės dalys</th>
<th>Kiekis dujose, tūrio %</th>
<th>Lyg. svoris, kg/m³</th>
<th>Dujų kiekis, m³</th>
<th>Dujų kiekis, m³/val.</th>
<th>Dujų kiekis, kg/val.</th>
<th>Kiekis dujose, masės %</th>
<th>Dujų kalorin-gumas, MJ/kg</th>
<th>Bendras dujų kalorin-gumas, MJ/kg</th>
<th>Anglies kiekis deginamo dūjose, kg/val.</th>
<th>Anglies kiekis angliavandenilių dūjose, kg/val.</th>
<th>Sieros kiekis, kg/val.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>41,430</td>
<td>0,717</td>
<td>1171467,22</td>
<td>133,729</td>
<td>95,884</td>
<td>22,356</td>
<td>52,580</td>
<td>11,755</td>
<td>71,9128</td>
<td>71,9128</td>
<td>0,0000</td>
</tr>
<tr>
<td>C₂H₆</td>
<td>19,800</td>
<td>1,342</td>
<td>559861,24</td>
<td>63,911</td>
<td>85,769</td>
<td>19,998</td>
<td>49,680</td>
<td>9,935</td>
<td>68,6150</td>
<td>68,6150</td>
<td>0,0000</td>
</tr>
<tr>
<td>C₃H₈</td>
<td>17,970</td>
<td>2,020</td>
<td>508116,49</td>
<td>58,004</td>
<td>117,168</td>
<td>27,319</td>
<td>46,350</td>
<td>12,662</td>
<td>95,8651</td>
<td>95,8651</td>
<td>0,0000</td>
</tr>
<tr>
<td>C₄H₁₀</td>
<td>7,150</td>
<td>2,597</td>
<td>202172,11</td>
<td>23,079</td>
<td>59,929</td>
<td>13,973</td>
<td>45,720</td>
<td>6,388</td>
<td>49,5966</td>
<td>49,5966</td>
<td>0,0000</td>
</tr>
<tr>
<td>C₅H₁₂</td>
<td>2,030</td>
<td>3,223</td>
<td>57399,91</td>
<td>6,553</td>
<td>21,117</td>
<td>4,924</td>
<td>45,350</td>
<td>2,233</td>
<td>17,5973</td>
<td>17,5973</td>
<td>0,0000</td>
</tr>
<tr>
<td>N₂</td>
<td>10,300</td>
<td>1,250</td>
<td>291240,95</td>
<td>33,247</td>
<td>41,558</td>
<td>9,690</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>CO₂</td>
<td>1,170</td>
<td>1,977</td>
<td>33082,71</td>
<td>3,777</td>
<td>7,466</td>
<td>1,741</td>
<td>0,000</td>
<td>0,000</td>
<td>2,0363</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>H₂S</td>
<td>0,000</td>
<td>1,620</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>16,993</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Inertinės</td>
<td>0,150</td>
<td>424,37</td>
<td>0,484</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Suma</td>
<td>100,000</td>
<td></td>
<td>2827582,0</td>
<td>322,783</td>
<td>428,892</td>
<td>100,000</td>
<td>256,673</td>
<td>42,973</td>
<td>305,6230</td>
<td>303,5868</td>
<td>0,0000</td>
</tr>
</tbody>
</table>

Degimo proceso tipas

<table>
<thead>
<tr>
<th>Anglies monoksido</th>
<th>Angliavandenilių</th>
<th>Azoto oksido, terminio</th>
<th>KD</th>
<th>Sieros oksido</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/s</td>
<td>t/m</td>
<td>g/s</td>
<td>t/m</td>
<td>g/s</td>
</tr>
<tr>
<td>A</td>
<td>1,9809</td>
<td>62,469</td>
<td>0,1124</td>
<td>3,5459</td>
</tr>
</tbody>
</table>

Iš viso teršalų, t/m: 68,2715
7 PRIEDAS

Aplinkos oro teršalų (LOJ) kickio skaičiavimai iš dyzelino talpyklos
Dyzelinio kuro laikymo (saugojimo) stacionariame rezervuare metu išmetamo LOJ kiekio apskaičiavimas

Mėnesinis laikymo–kvėpavimo metu išmetamas LOJ kiekis $N_{L,men}$ apskaičiuojamas pagal formulę:

$$N_{L,men} = K \cdot f \cdot 4,4 \cdot 10^{-5} \cdot p_T \cdot M \cdot \frac{T_n}{p_n} \left(p \cdot \frac{p}{T_2} \right) \cdot V_G \cdot d, \text{ kg} \quad (1)$$

čia:

K – rezervuaro nudažymo koeficientas (žr. 2 lentelę);

f – produkto garų prisotinimo laipsnis (žr. 3 lentelę);

T – laikomo produkto paviršinė vidutinė mėnesio temperatūra (K) (žr. 4 lentelę arba remiantis faktiniai meteorologiniai duomenimis priimama lygi vidutinėi mėnesio aplinkos temperatūrai);

p_T – vidutinis laikomo produkto sočiųjų garų slėgis (hPa) esant produkto paviršinėi vidutinėi mėnesio temperatūrai T (žr. 4 lentelę. Benzino atveju, turint benzino garų slėgi pagal Reidą (toliau vadinama – RVP), gali būti randamas pagal 3 priedo nomogramą);

M – vidutinė laikomo produkto garų molinė masė (kg/kmol) (žr. 4 lentelę);

p_n – slėgis normaliosiomis sąlygomis, lygus 1013 hPa;

T_n – temperatūra normaliosiomis sąlygomis, lygi 273 K;

T_1 – vidutinė minimali mėnesio garų temperatūra (K). Vidutinė vertė (nustatyta laikotarpui nuo 3 valandos nakties iki 8 valandos ryto) parenkama iš 3 lentelės;

T_2 – vidutinė maksimali mėnesio garų temperatūra (K). Vidutinė vertė (nustatyta laikotarpui nuo 11 valandos ryto iki 16 valandos) parenkama iš 3 lentelės;

p – aplinkos vidutinis mėnesio slėgis (hPa), randamas pagal matavimų arba meteorologinius stebėjimų duomenis;

V_G – garų virš laikomo produkto tūris (m³), apskaičiuojamas pagal formulę:

$$V_G = 0,075V + \frac{\pi D^2}{4} \cdot h, \text{ m}^3 \quad (2)$$

čia:

V – rezervuaro talpa (m³);

$0,075 \cdot V$ - vidutinė rezervuaro stogo (kupolo arba kūgio) dalies talpa (m³);
D - rezervuaro skersmuo (m);

h – neužpildytos produkto rezervuaro dalies aukštis (m);

d – skaičiuojamojo mėnesio dienų skaičius (vnt).

Metinis laikymo-kvėpavimo metu išmetamas LOJ kiekis \(N_{\text{Lmet}} \) apskaičiuojamas kaip atskirų mėnesinių LOJ kiekių suma pagal formulę:

\[
N_{\text{Lmet}} = \sum_{i=1}^{\text{mén}} N_{L,\text{men}}^e, \text{ kg} \tag{3}
\]

Pastaba. Metinis LOJ kiekis gali būti apskaičiuojamas ir kaip atskirais metų ketvirčiais išmetamų LOJ kiekių \(N_{\text{LI}}, N_{\text{LII}}, N_{\text{LIII}}, N_{\text{LIV}} \) suma. Tokiu atveju iš 4 lentelės randamos vidutinės minimaliosios \((T_1 \text{ ketv.}, T_1 \text{ II ketv.}, T_1 \text{ III ketv.}, T_1 \text{ IV ketv.}) \) ir vidutinės maksimaliosios \((T_2 \text{ I ketv.}, T_2 \text{ II ketv.}, T_2 \text{ III ketv.}, T_2 \text{ IV ketv.}) \) ketvirčių garų temperatūros ir imamas kiekvieno ketvirčio dienų skaičius \((d_1, d_2, d_3, d_4) \). Tada pagal (1) formulę apskaičiuojami kiekvieną ketvirčį laikymo metu išmesti LOJ kiekiai, kurių suma ir yra metinis laikymo metu išmestas LOJ kiekis.

Momentinis laikymo rezervuare metu išmetamas LOJ kiekis \(N_{\text{M,L}} \) apskaičiuojamas pagal formulę:

\[
N_{\text{M,L}} = N_{\text{Lm,n}} \cdot \frac{10^3}{t_L \cdot d_m}, \text{ g/s} \tag{4}
\]

čia:

\(N_{\text{Lm,n}} \) – mėnesinis laikymo rezervuare metu išmetamas LOJ kiekis, apskaičiuotas atitinkamam rezervuuarui pagal (1), (6), (17), (26) arba (27) formulę (kg);

\(t_L \) – laikas, per kurį kiekvieną parą vyksta laikymo išmetimai (s). Vidutinis \(t_L = 32400 \) s (9 h);

\(d_m \) - mėnesio dienų skaičius (vnt.).

Dyzelinio kuro laikymo 30 m³ talpos antžeminiame rezervuare metu į aplinkos išmetamo LOJ kiekio skaičiavimui naudoti duomenys ir gauti rezultatai pateikiami 4.2.3 lentelėje.

Stacionaraus rezervuaro pildymo metu išmetamo LOJ kiekio apskaičiavimas

Mėnesinis pildymo metu išmetamas LOJ kiekis \(N_{\text{p,m,n}} \) apskaičiuojamas pagal formulę:

\[
N_{\text{p,m,n}} = f \cdot 12 \cdot 10^{-3} \cdot \frac{1}{T} \cdot p_r \cdot M \cdot Q_{\text{men}}, \text{ kg} \tag{5}
\]

čia:

\(f \) – prisotinimo laipsnis, lygus 0,85;
T – vidutinė mėnesio paviršinė produkto rezervuare temperatūra (K), apskaičiuojama pagal matavimo duomenis arba parenkama iš 4 lentelės;

p_T – produkto sočiųjų garų slėgis (hPa), kai produkto temperatūra T (žr. 4 lentelę. Benzino atveju, turint benzino RVP, gali būti randamas pagal 3 priede pateiktą nomogramą);

M – vidutinė produkto garų molinė masė (kg/kmol), nustatoma pagal faktinius duomenis arba parenkama iš 4 lentelės;

$Q_{mēn}$ – per mėnesį pripilamo į rezervuarą produkto kiekis (m3/mėn.).

Metinis pildymo metu išmetamas LOJ kiekis N_{Pmet} apskaičiuojamas kaip atskirių mėnesinių LOJ kiekijų suma pagal formulę:

$$N_{Pmet} = \sum_{j=I}^{II} N_{Pmēn}, \text{ kg}$$

(6)

Pastabos:

Metinis LOJ kiekis gali būti apskaičiuojamas ir kaip atskirais metų ketvirčiais išmetamų LOJ kiekijų suma pagal (4) formulę. Tokiu atveju turi būti imamos ketvirčių vidutinės produkto rezervuare temperatūros T_I, T_{II}, T_{III}, T_{IV} ir kiekvieną ketvirčių į rezervuarą pripilamo produkto kiekčių Q_I, Q_{II}, Q_{III}, Q_{IV}.

Formulė (4) gali būti taikoma ir valandiniam pildymo metu išmetamam LOJ kiekui N_{Pval} apskaičiuoti. Tokiu atveju turi būti imamas Q_{val}.

Momentinis rezervuaro pildymo metu išmetamas LOJ kiekis $N_{M,P}$ apskaičiuojamas pagal formulę:

$$N_{M,P} = \frac{N_{Pmēn} \cdot 10^3}{t_P}, \text{ g/s}$$

(7)

čia:

$N_{Pmēn}$ – mėnesinis pildymo metu išmetamas LOJ kiekis, apskaičiuotas atitinkamam pildomam rezervuarui pagal (4), (10), (25) arba (28) formulę (kg);

t_P – rezervuaro pildymo per mėnesį laikas (s), sąlygojamas technologinių reikalavimų.

<table>
<thead>
<tr>
<th>Menų</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezervuaro nudažymo koeficientas K</td>
<td>1</td>
</tr>
<tr>
<td>Produktas garų prisitinkimo laipsnis f</td>
<td>1</td>
</tr>
<tr>
<td>Vidaus ląšiomo paviršinės mėnesio temperatūros T (K)</td>
<td>270</td>
<td>1</td>
<td>270, 5</td>
<td>275, 6</td>
<td>279, 5</td>
<td>286</td>
<td>290</td>
<td>291,5</td>
<td>291</td>
<td>287</td>
<td>283</td>
<td>278</td>
</tr>
<tr>
<td>Vidaus ląšiomo produktas sočių garų slęgis p (hPa), esant temperatūrai T</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,02</td>
<td>0,02</td>
<td>0,04</td>
<td>0,05</td>
<td>0,056</td>
<td>0,05</td>
<td>0,04</td>
<td>0,03</td>
</tr>
<tr>
<td>Vidaus ląšiomo produktas garų molinė masė M (kg/kmol)</td>
<td>130</td>
</tr>
<tr>
<td>Slęgis normalomis sąlygomis p0 (hPa)</td>
<td>1013</td>
</tr>
<tr>
<td>Temperatūros normalomis sąlygomis T0 (K)</td>
<td>273</td>
</tr>
<tr>
<td>Vidaus minimais mėnesio garų temperatūros Tmin (K)</td>
<td>266</td>
<td>266</td>
<td>267</td>
<td>271</td>
<td>276</td>
<td>283</td>
<td>286</td>
<td>287</td>
<td>288</td>
<td>287</td>
<td>281</td>
<td>275</td>
</tr>
<tr>
<td>Vidaus maksimalų mėnesio garų temperatūros Tmax (K)</td>
<td>271</td>
<td>271, 5</td>
<td>277</td>
<td>285</td>
<td>290</td>
<td>294</td>
<td>298</td>
<td>293</td>
<td>285</td>
<td>282</td>
<td>278</td>
<td></td>
</tr>
<tr>
<td>Aplinkos vidaus minimų temperatūros slėnis p (hPa)</td>
<td>760, 86</td>
<td>767, 46</td>
<td>765, 17</td>
<td>756, 06</td>
<td>763, 44</td>
<td>759, 36</td>
<td>760, 58</td>
<td>762, 63</td>
<td>760, 21</td>
<td>759, 05</td>
<td>752, 59</td>
<td>754, 22</td>
</tr>
<tr>
<td>Garų virš ląšiomo produkto tūris Vc (m3)</td>
<td>4,28</td>
<td>4,28</td>
<td>4,28</td>
<td>4,28</td>
<td>4,28</td>
<td>4,28</td>
<td>4,28</td>
<td>4,285</td>
<td>4,28</td>
<td>4,28</td>
<td>4,28</td>
<td>4,28</td>
</tr>
<tr>
<td>Rezervuaro talpa V (m3)</td>
<td>30</td>
</tr>
<tr>
<td>Rezervuaro skersmuo D (m)</td>
<td>3,6</td>
</tr>
<tr>
<td>Neužpildytos produkto rezervuaro dalies aukštis h (m)</td>
<td>0,2</td>
</tr>
<tr>
<td>Skaičiuojamas mėnesio dienų skaičius d (vnt.)</td>
<td>31</td>
</tr>
<tr>
<td>Mėnesinis laikymo-kvėpavimo metu išmetamas LOJ kiekis Nmin, (kg)</td>
<td>0,00</td>
</tr>
<tr>
<td>Maksimalus grėžimo laiktarpio metu laikymo-kvėpavimo metu išmetamas LOJ kiekis Nmax, (kg)</td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>Momentinis laikymo-kvėpavimo metu išmetamas LOJ kiekis NL, (g/s)</td>
<td>1.10</td>
<td>7</td>
<td>1.10</td>
<td>7</td>
<td>2.10</td>
<td>7</td>
<td>5.10</td>
<td>7</td>
<td>5.10</td>
<td>7</td>
<td>8.10</td>
<td>7</td>
</tr>
<tr>
<td>Vidaus momentinis laikymo-kvėpavimo metu išmetamas LOJ kiekis NL, (g/s)</td>
<td>1.10</td>
<td>7</td>
<td>1.10</td>
<td>7</td>
<td>5.10</td>
<td>7</td>
<td>3.10</td>
<td>7</td>
<td>3.10</td>
<td>7</td>
<td>3.10</td>
<td>7</td>
</tr>
<tr>
<td>Laikas per kurį kiekvieną parą vyksta laikymo išmetimai t, (s)</td>
<td>3240</td>
</tr>
</tbody>
</table>

Dyzelinio kuro laikymo 30 m³ talpos antžeminiam rezervuare metu išmetamas LOJ kiekis
Antžeminio rezervuaro pildymo metu išmetamas LOJ kiekis

<table>
<thead>
<tr>
<th>Mėnesys</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prisitinkimio laipsnis (f)</td>
<td>0,85</td>
</tr>
<tr>
<td>Vidutinė mėnesio paviršinė produkto rezervuare temperatūra (T) (K)</td>
<td>270</td>
<td>270, 5</td>
<td>275, 6</td>
<td>279, 5</td>
<td>286</td>
<td>290</td>
<td>291, 5</td>
<td>291</td>
<td>287</td>
<td>283</td>
<td>278</td>
<td>273</td>
</tr>
<tr>
<td>Produkto sočiųjų garų slėnis (p_T) (hPa), kai produkto temperatūrai (T)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,01</td>
<td>0,02</td>
<td>0,04</td>
<td>0,05</td>
<td>0,05</td>
<td>0,054</td>
<td>0,04</td>
<td>0,03</td>
<td>0,02</td>
<td>0,01</td>
</tr>
<tr>
<td>Vidutinė produkto garų molinė masė (M) (kg/kmol)</td>
<td>130</td>
</tr>
<tr>
<td>Per mėnesį pripilamo į rezervuarą produkto kiekis (D_{\text{p.m.}}) (m³/mėn.)</td>
<td>118</td>
</tr>
<tr>
<td>Mėnesinis pildymo metu išmetamas LOJ kiekis (N_{\text{met.}}) (kg)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,01</td>
<td>0,01</td>
<td>0,02</td>
<td>0,02</td>
<td>0,03</td>
<td>0,029</td>
<td>0,02</td>
<td>0,01</td>
<td>0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>Per gręšnio gręšimo laikotarpį pildymo metu išmetamas LOJ kiekis (N_{\text{p.m.}}) (kg)</td>
<td>0,054</td>
<td></td>
</tr>
<tr>
<td>Siurblo našumas (m³/s)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,009</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Rezervuaro pildymo per mėnesį laikas (t_r) (s)</td>
<td>1216</td>
</tr>
<tr>
<td>Momentinis rezervuaro pildymo metu išmetamas LOJ kiekis (N_{\text{met.}}) (g/s)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,002</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Vidutinis momentinis pildymo metu išmetamas LOJ kiekis (N_{\text{met.p.m.}}) (g/s)</td>
<td>0,001</td>
<td></td>
</tr>
</tbody>
</table>

Pastaba (I ir X lentelės): Maksimalus gręšnio laikotarpio metu laikymo-kvėpavimo metu išmetamas LOJ kiekis (kg/metus) ir vidutinis momentinis laikymo-kvėpavimo metu išmetamas LOJ kiekis (g/s) apskaičiuotas vertinant tik rudens ir žiemos laikotarpio, kuomet planuojamas gręšnio gręšimas, tris mėnesių per kuriuos į aplinką išmetamas didžiausias teršalų kiekis, kadangi 1 gręšnio gręšmo trukmė 80 parą.